Responsive Job Scheduling for Map-Reduce in Hadoop Framework
نویسندگان
چکیده
منابع مشابه
Job Attentive Scheduling Algorithm in Hadoop
In recent years cloud services have gained much attention as a result of their availability, scalability, and low cost. One use of these services has been for the execution of scientific workflows as part of Big Data Analytics, which are employed in a diverse range of fields including astronomy, physics, seismology, and bioinformatics. There has been much research on heuristic scheduling algori...
متن کاملResearch on Job Scheduling Algorithm in Hadoop
On the basis of researching Fair Scheduling Strategy deeply in Hadoop cluster,the Node Health Degree is defined by constructing the relationship function between node load and job fail rate, and a job scheduling algorithm based on Node Health Degree is proposed in this paper. Nodes are grouped, according to Node Health Degree, into three categories in order to assign corresponding job in accord...
متن کاملHadoop Map Reduce Job Scheduler Implementation and Analysis in Heterogeneous Environment
Hadoop MapReduce is one of the popular framework for BigData analytics. MapReduce cluster is shared among multiple users with heterogeneous workloads. When jobs are concurrently submitted to the cluster, resources are shared among them so system performance might be degrades. The issue here is that schedule the tasks and provide the fairness of resources to all jobs. Hadoop supports different s...
متن کاملBig Data Processing with Hadoop Map-reduce
The amount of data in our world has been exploding, and analyzing large data sets—so-called big data—will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. The increasing volume and detail of information captured by enterprises, the rise of multimedia, social media, and the Internet of Things will fuel exponential growth in data ...
متن کاملImplementation and Analysis of Join Algorithms to handle skew for the Hadoop Map/Reduce Framework
he Map/Reduce framework-a parallel processing paradigm-is widely being used for large scale distributed data processing. Map/Reduce can perform typical relational database operations like selection, aggregation, and projection etc. However, binary relational operators like join, cartesian product, and set operations are difficult to implement with Map/Reduce. Map/Reduce can process homogeneous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IJARCCE
سال: 2017
ISSN: 2278-1021
DOI: 10.17148/ijarcce.2017.63176